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Measurements in turbulent channel flow with forced oscillations covering a wide range 
of frequencies (w’ = 0.03-0.0005) and amplitudes (10-70 YO of centreline velocity) are 
presented and discussed. Phase averages of the velocity ( u )  across the flow, and of 
the wall shear stress ( T ) ,  as well as the turbulent fluctuations (u’u’) and (7’7’) are 
obtained with LDA and hot-film techniques. The time-mean quantities, except u“, are 
only slightly affected by the imposed oscillations whatever their frequency and 
amplitude. It is shown that the appropriate similarity parameter for the oscillating 
quantities 21 and ‘i is the non-dimensional Stokes length 1; (or the frequency w’ = 

2/13 .  In the regime of high-frequency forcing (Z: < 10) the oscillating flow zl and .? are 
governed by purely viscous shear forces although the time-mean flow is fully turbulent. 
This behaviour may be explained by the physical significance of I,’. At lower frequency 
ZT > 10, the oscillating flow is influenced by the turbulence, in particular the amplitude 
of .? increases with respect to the Stokes amplitude and becomes proportional to 1;. The 
relative amplitude of (u’u‘) and (7’7’) decreases sharply with increasing forcing 
frequency once IT < 25. This decay of the turbulence response is faster for the wall 
shear stress. For forcing frequencies such that 1,’ > 12, (u’u’) and (7’7’) lag behind ( u )  
and (T) by respectively about 75 and 130 viscous time units. These lags decrease by a 
factor 2 at higher forcing frequencies. It is shown that in the log layer, the turbulence 
modulation diffuses away from the wall with a diffusivity equal to that of the time- 
mean turbulence. The imposed oscillations are felt down to the small scales of the 
turbulence as may be evidenced from the cyclic modulation of the Taylor microscale, 
the skewness and the flatness factors of &‘/at. The modulations of the skewness and 
the flatness go through a maximum around 1,’ = 12. 

1. Introduction 
Unsteadiness imposed on a turbulent shear flow by means of time-dependent 

boundary conditions greatly increases its complexity because time must be added to the 
independent space variables and also the forcing introduces an amplitude and a 
timescale. Starting from a single steady flow, one type of forcing thus generates an 
entire two-parameter family of unsteady flows. In addition several types of forcing are 
generally not only possible but relevant to practical situations. 

A classical example is the flow around an airfoil rendered unsteady by oscillations 
either of the angle of attack or of the free-stream velocity or of a combination of these 
two boundary conditions as on helicopter blades. Somewhat simpler situations derived 
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from this practical case are the unsteady flat-plate turbulent boundary layer or 
turbulent channel flow driven by oscillations of the free stream ~ or the centreline - 
velocity about a mean value. 

The complexity of these unsteady wall flows is reflected in the difficulty in 
establishing which similarity parameters are physically the most relevant. Thus, for the 
non-dimensional frequency or Strouhal number Cousteix, Houdeville & Javelle (1 977) 
have used w X / U ,  (where w = 2xf is the frequency of imposed oscillations, X is the 
distance from the leading edge of the flat plate and ge is the time-mean free-stream 
velocity) to present their data. Arguing that the imposed oscillations should interact 
most strongly with the turbulence when their frequencies are comparable, Ramaprian 
& Tu (1983) have proposed w6/cT, where uT is the friction velocity based on the time- 
mean wall shear stress. Since as a rough approximation uT x U, and for the flat plate 
S cc X ,  there is a relationship between these two frequency parameters. 

A similarity parameter of a different kind namely I!: = I!, U,/V (I, = .\/2v/w being the 
thickness of the viscous Stokes layer), was introduced by Ronneberger & Ahrens (1977) 
and independently later by our own group (Binder & Kueny 1981). An appropriate 
name for this parameter could be ‘ Stokes-Reynolds number’. The introduction a 
priori rather surprising, of the viscous Stokes thickness was based on both studies on 
observations that the oscillating flow near the wall followed closely the viscous Stokes 
solution when the forcing frequency was high enough. It may be interesting to note that 
these observations pertained to quite different physical experiments since the first 
authors investigated air flow in a pipe with acoustic forcing and measured the 
oscillating wall shear stress, while our group investigated pulsed flow in a two- 
dimensional water channel and measured the oscillating velocity by means of LDA 
with the point closest to the wall at y+ = 3. In order to explain the viscous behaviour 
of the oscillating flow at high forcing frequencies, both groups linked two facts 
together: one, that in this case viscosity alone diffuses the oscillating wall shear stress 
to a distance of the order of Z, which varies like l / d ;  and two, that the turbulent flow 
near the wall in the steady regime is dominated by viscous effects up to y+ z 12 since 
below this distance the Reynolds stress is smaller than the viscous stress. Consequently, 
if the frequency is high enough so that 1; < 12, the shear wave from the wall will reach 
the asymptotic outer values before the turbulence can play an appreciable role in the 
momentum transfer. This may be defined as the high-frequency regime. The oscillating 
flow as shown by these experiments departs progressively from the viscous Stokes 
solution at larger values off:. 

It may easily be seen that the forcing frequency scaled with inner variables is related 
to 1: by the simple formula w+ = 2/1i2. It is also interesting to note that the Strouhal 
number based on Z, and iiT is inversely proportional to 1;: 

UIS/iiT = y’2w+ = 2 / q .  

In the two experiments mentioned above which have led to the definition of ll, the 
amplitudes of the imposed oscillations were small, 5 % or less. In other experiments 
with larger amplitudes (Cousteix, Javalle & Houdeville 198 1 ; Ramaprian & Tu 1983 ; 
Parikh et al. 198 l), on the other hand, measurements could only be made in the more 
accessible outer regions of the shear flow and not in the lower logarithmic region or 
below. Yet, it is this latter region where 50 % of the mean velocity variations occur and 
up to 100 YO of the change in oscillating velocity at medium or high forcing frequencies. 
The questions of the role of the amplitude on unsteady effects and on the relevance of 
the Z: parameter under high-amplitude forcing could, therefore, not be answered with 
the existing data. 
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The scaling of the forcing frequency is not the only subject of controversy. Another 
moot point is the possible effect of the forcing on the time-mean flow. Most authors 
have concluded that there is no such effect (Ma0 & Hanratty 1986; Tardu, Binder & 
Blackwelder 1987; Finnicum & Hanratty 1988) even in the presence of mild adverse 
pressure gradients (Jarayaman, Parikh & Reynolds 1982; Brereton, Reynolds & 
Jarayaman 1990). The results of the Iowa group on the unsteady pipe flow (Tu & 
Ramaprian 1983; Ramaprian & Tu 1983), however, indicate small modifications of the 
time-mean characteristics when the oscillation frequency is sufficiently close to the 
bursting frequency or when the amplitude is large (the maximum imposed amplitude 
is 64 % in these experiments but the corresponding imposed frequency (1; = 40) is quite 
low). The later data of the same group (Menendez & Ramaprian 1983) on a forced 
boundary layer show that this slight effect on the time-mean properties is concentrated 
in the outer layer but that the time-mean wall shear stress also decreases slightly with 
increasing imposed frequency. Recently, Mao & Hanratty (1991) have also reported 
such a decrease when the amplitude of the oscillations is large and when the imposed 
frequency is o+ = 0.05. Although this question is not settled at the present time it raises 
the question of the possibility of manipulation of coherent structures and drag 
reduction via imposed oscillations. That requires sufficiently high imposed amplitudes 
and frequencies and the published data cover only limited range of one or both of these 
parameters. 

The response of turbulence to unsteady forcing is a complex question but of great 
fundamental importance. In periodic flows it is manifested in the cyclic modulation of 
turbulence quantities, such as moments of fluctuations scales or structural parameters. 
_I The best documented quantity is the modulation of the wall shear stress fluctuations 
7’7’ (Ramaprian & Tu 1983; Mao & Hanratty 1986; Finnicum & Hanratty 1988; 
Tardu & Binder 1993). These measurements show that the amplitude and phase shift 
of the fundamental mode of vary considerably with the forcing frequency. The 
amplitude for instance decreases sharply - by nearly an order of magnitude - and then 
increases when the forcing frequency is varied continuously from low quasi-steady 
values to very high values. Data on the modulation of the Reynolds shear stresses cover 
a much more restricted range of flow parameters, especially concerning the imposed 
amplitudes. Although some common features can now be drawn such as the increase 
of the phase lag of the shear stresses across the boundary layer (Ramaprian & Tu 1983 ; 
Brereton & Reynolds 1987), or the decrease of their modulation with increasing 
imposed frequency (Brereton et al. 1990; Tardu et al. 1987) there is still a general lack 
of agreement on the reaction of the near-wall turbulence. 

The research reported here was specifically designed to investigate the velocity field 
in the logarithmic and the wall region with a wide range of imposed amplitudes and 
frequencies. Particular attention has been paid to studying the response of the 
turbulence to imposed amplitudes as high as 6 5 %  of the free-stream velocity with 
imposed frequencies reaching the mean bursting frequency. Detailed measurements of 
the wall shear stress and of the streamwise velocity modulations are reported. The 
effect of the imposed unsteadiness on the small and intermediate scales of the 
turbulence is studied through the measurements of the modulation of the zero-crossing 
frequency and moments of the fluctuating streamwise velocity time derivative. 
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I 

FIGURE 1. The water channel and pulsating device: (a) constant-head tank, (b)  pulsating device, 
( c )  setting chamber, (d) channel, (e) test section. 

2. Experimental facilities 
2.1. The $ow loop apparatus 

The main elements of the flow loop are: a constant-head tank with a large free surface 
in order to minimize variations in the total head when flow is pulsed, the pulsator, a 
control valve, a settling chamber with screens and a honeycomb, a converging section 
with a l 0 j l  contraction, the test channel, a large free-surface tank (1 x 2 x 4.5 m3) and 
the pump (figure 1). The last metre of the channel is immersed in this tank. A 
divergence up to 30" can be imposed on this section to set up a time-mean pressure 
gradient. The return flow to the pump is via a free-surl'ace flow in order to limit the 
elements of the loop subjected to large unsteady pressure forces. 

The dimensions of the test channel are : width = 100 mm, length = 2600 mm, span = 

1OOOmm. The boundary layer at the channel entrance is tripped by tridimensional 
5 mm high crenel-type roughnesses. 

Oscillations in the flow rate are produced by the following device : the inflow pipe to 
the pulsator terminates in a cylinder having 24 longitudinal 5 x 200 mm slots machined 
in its surface (figure 1). The end of the cylinder was capped so the water had to exit 
through the slots. A moveable sleeve was tightly fitted around the cylinder so the sleeve 
covered some, all or none of the length of the slots. This apparatus was housed in a 
larger cylinder which collected the water exiting through the slots and allowed it to 
continue into the settling chamber. The oscillation frequency of the sleeve u7as 
controlled by a variable-speed motor through an eccentric bearing. The eccentricity 
was adjustable to control the amplitude of the oscillation. The mean flow was 
controlled by adjusting the length of the connecting arm between the eccentric bearing 
and the sleeve. These three variables were easily changed in a continuous manner and 
allowed great flexibility in adjusting the flow conditions. The amplitude could be varied 
from 0 to 80% of the mean flow and the period from 2.5 s to infinity, although the 
largest period studied was 132 s. The time period was repeatable within 0.1 %. 

The flow loop provided very stable and repeatable mean and periodic flow 
conditions for a given setting of the pulsator. These conditions varied by less than 
0.5 YO from one day to another. The pulsator proved to be very convenient for the in 
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situ calibration of hot films. The effect of the periodic displacement of the wall which 
gives rise to a parasitic velocity oscillation seen by a fixed probe was negligible as 
shown in Appendix A. 

The mean centreline velocity U ,  can be varied from 0 to 50 cm s-l. The corresponding 
maximum Reynolds number based on the half-height h of the channel is (ReJmaz = 

25 x lo3 and the corresponding value of Re, is approximately 2500. Measurements 
show that the flow is fully turbulent at the measuring station when U, > 6 cm spl. For 
most of the data presented here a, = 17.5 cm s-l and Re, = 8500. Even with a 
centreline amplitude of 64 % the flow was still turbulent under static conditions when 
the flow rate was minimum, thus avoiding the undesirable complications which could 
be produced by periodic transitions. On the other hand, with Uc = 17.5 cm spl the 
value of the friction velocity was iiT = 0.89 cm spl, so that the inner scale 1, = v/DT was 
1, z 0.126 mm which made it possible to make LDA velocity measurements down to 
y+ = 3 despite the large span of the channel and to explore the inner layer. 

The variations of the centreline velocity in the spanwise direction were less than 2 YO. 
This was expected on account of the large 10/1 aspect ratio of the channel. The 
symmetry of the mean and of the periodic flow with respect to the centreplane was also 
checked. 

Because of space limitations the channel length is only 52h and the measurement 
station was at a distance 42h from the entrance. This length is rather short to ensure 
fully developed turbulent flow despite the rather large height of the entrance trip, since 
this length should be about 90h at Re, = 25000 (Comte-Bellot 1965). The development 
length of the turbulent flow is, however, neither uniform across the channel nor the 
same for different quantities: it is faster near the wall than in the core and its rate 
decreases with the order of the moment considered. Since the transverse gradients of 
the oscillating field are entirely or, at very low forcing frequencies, almost entirely 
confined within the inner layer, as shown by previous measurements and confirmed by 
present ones, the requirement on the channel length can, therefore, be relaxed without 
putting undue restrictions on the generality of the results. This conclusion is supported 
by the fact that the measured time-mean velocity and longitudinal turbulent intensity 
are the same at the measuring station and 6h further downstream and are in good 
agreement with previously published data. Furthermore, the time mean and periodic 
characteristics of the wall shear stress were measured at four stations located 
respectively at x//2 = 32, 38.3,44.6 and 50.8 from the channel entrance. The results for 
four typical cases are given in table 1. It is seen in these conditions with the centreline 
velocity of 9.54cm s-', that the characteristics of the mean values and of the 
modulations of the wall shear stress and of its turbulent fluctuations are the same at 
these four locations within experimental accuracy. It may, therefore, be concluded that 
the flow is sufficiently well established at x/h = 42 for the type of measurements 
reported here. 

2.2. Flow charac ter is t ics 

3. Instrumentation: data acquisition and reduction 

LDA measurements 
The streamwise velocity in the channel flow was measured by a one-component 

25mW laser Doppler anemometer (Binder ct al. 1985~).  The dimensions of the 
measuring volume were 0.3 and 1.5 mm (2.3 x 124). These dimensions could be 

3.1. Instrumentation 
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reduced by a factor of 5 by use of a 5X-beam expander. Measurements as close as 
0.25 mm z 2.51, (for U, = 17.5 cm s-l) were then possible, but not without difficulty 
because the signal quality very close to the wall is poor and the sampling rate is quite 
small (a few samples/s). 

The period of the Doppler signal was determined by a homemade counter (Tardu, 
Binder & Blackwelder 1986). The Doppler signal was frequency shifted with a Pockel 
cell in order to make measurements in reverse flow. McLaughlin & Tiederman's 
(1973) correction was applied in order to eliminate the statistical bias due to the 
proportionality between sampling rate and velocity when the processor is not 
saturated, as was the case here. Incidently, this can simply be done by determining the 
average Doppler period as well as the average Doppler frequency as shown in 
Appendix B. 

Hot-film measurements 
The wall shear stress T was measured with Dantec 55R46 or TSI 1268 W flush- 

mounted hot-film probes (sensing surfaces 0.2 x 0.75 mm (1.6 x 61,) and 0.127 x 1 mm 
(1 x 81,) respectively). They were operated at overheat ratios between 3 and 8 %  with 
Disa 55M01 or Dantec 56C01 constant-temperature anemometers. Bucking amplifiers 
or a digital to analog converter were used to suppress the DC anemometer output at 
zero velocity, so that the signal could be amplified before A/D conversion. This 
conversion was mostly performed with an Analog-Device RTI-800 board (accuracy : 
11 bit+sign; 8 channels) installed in an Olivetti 240 PC computer. 

The hot-film gauges were calibrated in situ by determining the velocity gradient at 
the wall with the LDA. To do this properly requires several measuring points within 
the viscous sublayer (j' < 5) and the precise determination of the y-position, two 
requirements which come up against great practical difficulties. As already mentioned 
above, measurements are not possible here below y+ = 2.5 and they are difficult 
for 2.5 < y+ < 5, because of the low sampling rate which, combined with the high 
turbulence level, requires extremely long integration times (2 hours or more). The 
y-positions are known accurately only to within an additive yo  because the exact 
position of the wall cannot be determined. In order to be able to use some points 
beyond y+ = 5 and to reduce the uncertainty about the exact location of the wall, u, 
and yo are both obtained from a least-squares fit of the measured profile with the 
empirical relation u+ = 14.5 tanhCyf/14.5) for y+ < 14.5. This law differs from 
Eckelmann's data (Eckelmann 1974; originally tabulated data kindly provided by the 
authors) by less than 2 %  over the range of y+ from 0 to 14.5). 

The mean wall shear stress determined with this method was aptly correlated by the 
Blasius formula: 7 = 0.048Re&pI;i;4). This empirical relation was subsequently used to 
determine 7 from the measurement of U,. The exponent in the heat transfer law: E 2  = 

A + B'i", where E is the output from the hot-film set, was always found to be between 
0.33 and 0.35. Consequently, the theoretical value of 1/3 from the LCvique solution 
consistent with the results of Spence & Brown (1968) was used (see also Appendix C). 
The calibration constants A and B were usually determined from five couples (E, F ) .  

At large amplitudes, reverse flow was encountered at the wall. Figure 2 shows the 
phase average of the modulation of the wall shear stress (7) in such a case. Pedley 
(1976) has shown that the response of the thermal boundary layer in reversing flow 
depends on the frequency parameter w* = w+(L;' Pr); = w+ Pef, where w+ and L; are 
respectively the angular frequency and the streamwise length of the sensor in wall units, 
Pr is the molecular Prandtl number of the fluid and Pe is the PCclet number. In our case 
w+ < 0.03 and the response of the thermal boundary layer may be considered as quasi- 
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p 0.12 1 ++ ++ 

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 
tl T ti T 

FIGURE 2. Examples of phase averages in thc presence of reverse flow. 1; = 12: ut; = 70. U, = 

18.5 cm s l. (a) Wall shear stress (7); (b) intensity of the turbulent wall shear stress fluctuations 
(7‘7‘). 

1 . 1 ’  1 . I . I . I ‘  

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 
tlT tJT 

FIGURE 3. Examples of phase averages, LDA measurements: y+ = 4.86, 1: = 8.1, = 17.5 cm s-l, 
a; = 0.64. (0) Velocity ( u ) ,  (b) intensity of turbulent velocity fluctuations (u’u’). 

steady. Figure 2 for instance corresponds to w* = 0.04. On the other hand when flow 
reversal occurs, the heat transfer rate does not reach zero because of diffusion effects. 
The heat transfer rate measured at (7) = 0 is three times greater than the value given 
by the boundary-layer analysis of Pedley (1976) and the numerical solutions of Kaiping 
(1985) which neglect the axial diffusion. Since this diffusion is important in our case on 
account of the small value of the time-mean Peclet number PrLT2 a complete 
numerical solution of the whole thermal elliptical equation was carried out. The 
numerical solutions are in good agreement with the measurements (Tardu 1988; see 
Appendix C ) .  Since the response of the boundary layer is quasi-steady, the film output 
during flow reversal has been rectified by taking the symmetry with respect to zero 
(figure 2;  see also figure 23). 

Some measurements were also performed with a single-fibre hot-film probe (model 
Dantec 55R11, sensing element: 70 pm = 0.61, in diameter and 1.25 mm = 111, long) 
mainly for the velocity time derivative and the zero-crossing frequency measurements. 
The calibration of this probe was done in the channel with the LDA by a least-squares 
fit to the relation E‘ = A +Bun;  n was found to be between 0.45 and 0.5. For these 
measurements a 15 bit+sign Preston A/D converter was used with a sampling 
frequency of 500 Hz (i.e. 4.2 to 8 e / v )  after prefiltering the signal by a Krohn-Hite 
filter. The total duration of the record used was 2.2 x lO5v/u;. 

The calibration of the hot films was checked before and after each measurement. 
Because of the low overheat ratio used in water, the hot-film measurements are quite 
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sensitive to temperature drifts. The temperature of the water was continuously 
monitored. In order to minimize temperature variations, the water of the flow loop is 
cooled by a heat exchanger supplied with tap water. In the best conditions, the 
temperature change was less than 0.1 “C per hour. When the integration time exceeded 
15 mn, the film response was corrected for the temperature drift by assuming linear 
variation over the time interval. 

3.2. Data reduction 
The notation q, 4” and q‘ is used to designate respectively the time-mean, periodic and 
random turbulent part of the quantity 4 so that in established flow 

d Y ,  t ;  T )  = aY)+4“(Y7 t lT)+q’(y ,  0. 
The angle brackets designate the ensemble or phase average : 

it follows that (4 ’ )  = 0 and ( 4 9  = ( (4)12+ (4 ’49 .  

The quantity (4’4’) is a function of t / T  and, in keeping with the expression for ( q ) ,  
it is convenient to write (q’q’)( t /T)  = 4 / 4 / + n ( t / T ) ,  where f l i s  the ‘modulation’ 
of the variance about the time-mean value 4/4/. Neither 4“ nor f l  are necessarily pure 
sine functions and are most conveniently described by the amplitudes and phases of the 
successive terms of the Fourier series. In the present results the fundamental mode is 
generally dominant although higher harmonics may in some instances be substantial, 
especially in the turbulence modulations. An adequate description of the modulation 
is then given by the amplitude and phase of the fundamental mode, designated by A 6  
and @G where the index is the quantity under consideration, for example, A ,  and @, 
or A z a n d  G q 7  Finally the relative modulation, i.e. the amplitude of the modulation 
with respect to the time-mean value of the same quantity AG/rlwill be designated by 
a lower-case letter a ~ ,  for example a, = A , / q  or a z =  A n / q ’ q ’ .  

The phase-locked ensemble averages ( 4 )  and (4’4’) necessary to determine 4; q ( t / T )  
and (4’4’) ( t / T )  were obtained by dividing the cycle into bins of equal width (generally 
50) and the desired quantity was averaged in each bin. The beginning of each cycle was 
provided by a pulse from a photoelectric cell triggered by the pulsator. Errors on long 
time averages due to slow drifts in the forcing period were thus avoided. 

Examples of phase averages are shown on figure 3. Fourier analysis was applied to 
these phase averages in the following form : 

m 

( 4 )  = q+ A ,  cos (wt + @,) + C A,, cos (nwt + @,,), 

and similarly for (4’4’). The coefficients of the first ten modes were systematically 
computed and recorded. 

Statistical convergence of the phase averages was checked by inspecting the data 
points. The truncated Fourier series limited to the first or to the first three modes was 
drawn through the data points as shown on the example of figure 3. Poor convergence 
was revealed by large scatter of the data points with respect to the smooth Fourier 
series. In most cases an integration time of lO5v/U; ( z  15-25 mn) was sufficient to 
ensure satisfactory statistical convergence of the phase averages. 

n=z 
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1,' aiz 
1 8.1 0.64 
+ 8.1 0.30 
t 16 0.64 
A 23 0.64 
x 34 0.64 
0 Steady flow 
H Eckelmann (1972), steady channel flow 

TABLE 2. Symbols used on figures 4, 5,  8, 13, 14 for measurements made using LDA 

a 
+ 
0 

A 
0 

X 

0 

UC (cm s-l) a!z T (s) 
28.5 0.13 2.6-33 
19.0 0.19 3-3 1 
30.0 0.27 2.6-61 
30.0 0.17 2.661 
30.0 0.10 2.615 
18.5 0.70 4-132 
1 6 2 6  0.60 6 

Houdeville et al. (1984) 
Menendez & Ramaprian (1983) 
Mao & Hanratty (1986) 

TABLE 3. Symbols used on figures 6, 7, 11, 15 €or measurements made using a 
flush-mounted hot-film gauge 

4. Results and discussion 
of unsteady flows forced at four different 

frequencies such that 1; = 8.1, 16, 23, 34 (see table 2) and with a centreline amplitude 
of 64 % have been measured with LDA. Flows with high-frequency forcing = 8.1 
but with a centreline amplitude of 30% have also been investigated. 

The properties of 7, .? and =measured with the flush-mounted hot-film gauge have 
been determined by varying the period of the imposed oscillations from 2.6 to 132 s, 
i.e. 1: = 8.1 to 64, for centreline amplitudes between 10 to 70% (table 3). Since the 
frequency parameter 1; = (2/wv)iiiT also depends upon ii7, which is roughly 
proportional to the centreline velocity, measurements have also been performed with 
different centreline velocities. In one case with 60 Yo centreline amplitude, the velocity 
was varied between 16 and 26 cm s-l. 

The complete profiles of u, 21 and 

4.1. The time-mean characteristics 

4.1.1. The mean velocity 
The mean velocity distributions u"(y+) are shown on figure 4 for steady and 

unsteady flow conditions. The time-mean unsteady velocities are compared with the 
mean velocities at the same y+ position for the same value of a,. The steady flow 
measurements compare well with Eckelmann's (1974) data at a similar Reynolds 
number. The closest measurement point to the wall is at y+ = 4 and the flow field is 
explored from the viscous sublayer into the logarithmic layer. The unsteady profiles 
obtained with two different amplitudes and four different frequencies are shown on the 
same figure. Clearly there is no effect of the imposed unsteadiness on the time-mean 
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FIGURE 4. Mean velocity profiles in steady and unsteady flow. For legend see table 2.  

velocity profiles despite the large forced amplitudes. These results are significant since 
for 1: = 8.1 and aG = 0.64, the amplitude of the velocity oscillations becomes greater 
than the local mean velocity near the wall and periodic flow reversal occurs. They 
confirm the findings of Karlsson (1959), Cousteix et al. (1981) and Binder & Kueny 
(1981) obtained, however, for smaller values of the imposed amplitude. 

Mizushina, Maruyama & Shiozaki (1973) and Mizushina, Maruyama & Hipasawa 
(1975) and Ramaprian & Tu (1983) have suggested that the insensitivity of the mean 
flow to imposed oscillations may only be true at low amplitudes and low frequencies, 
i.e. at frequencies significantly below the bursting frequency. The bursting frequency 
reported by Blackwelder & Haritonidis (1984) is fl = 0.0035 and the value given more 
recently by Coughran & Bogard (1987) isfl = 0.0062. Sincef' = (7~1:~)-', it is seen that 
the highest frequency of the present experiments is f +  = 0.005 which is close to the 
values given above and, yet, the mean flow remains unaltered even for imposed 
amplitudes as high as 0.64Uc. 

The oscillating flow may interact with the mean flow directly via the oscillating part 
of the Reynolds stress E, or indirectly via since the Reynolds equation for the 
mean flow is 

The results presented in this subsection suggest that G is negligible and that the 
mean Reynolds stress is unaltered by imposed velocity oscillations. Although an order- 
of-magnitude analysis must be used with caution in unsteady flows because of the 
phase shifts between the oscillating terms, it may still be noted that in an unsteady 
boundary layer without an adverse pressure gradient afi/ax z 0 and by continuity 
u" z 0 so that Z z  0 and this is a fortiori true in channel flow. 

4.1.2. The longitudinal turbulent intensity 
The dominating impression from fipure 5, which shows profiles of the time-mean 

longitudinal turbulent intensity (n)~/q, is that the unsteadiness has no dramatic 
effect on this quantity even in these cases of large-amplitude forcing, and the classical 
profiles are found in steady and unsteady flows with a maximum at y+ = 12 (Coles 
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FIGURE 5. Mean turbulent intensity profiles in steady and unsteady flow. For legend see table 2. 

1978). The observed differences between the various flows on this graph must be viewed 
while remembering that the measured (u"p/~ ,  cs. y+ distributions in steady flow vary 
somewhat with Reynolds number (Wei & Willmarth 1989) and from one experiment 
to another. Notwithstanding these differences between steady flows, there is a 
systematic increase in the turbulent intensity in the forced flows at low frequency: thus 
in the case 1; = 34, the maximum value at approximately = 12 is about 15 YO higher, 
and further away from the wall the intensity is about 30 Yo higher than in steady flow, 
as also compared with the direct simulation data of steady turbulent boundary layer 
at Re, = 670 reported by Spalart (1988). 

These results do not agree with the earlier measurements of Mizushina et al. (1975) 
who found an increase of the mean turbulent intensity at high forcing frequencies 
which they interpreted as a sort of resonance between the turbulence and the imposed 
oscillations in these conditions. Such trends were also found by Tu & Ramaprian 
(1983, p. 43; their data corresponding to 2: = 14 and az = 0.15), who adopted a 
similar point of view. 

The production term in the transport equation of u/uI is 

since by definition = 0. The relative insensitivity of the zk"-profiles 
indicates that the production by the interaction with the oscillating velocity gradient 
m222/ay is small compared with m 2 u / a y  unless is itself affected by the imposed 
unsteadiness or the other mechanisms, namely turbulent transport and dissipation, 
exactly counterbalance the increased production, which is an unlikely eventuality. The 
production of the oscillating terms could only be appreciable if the terms n a n d  a22/ay 
were comparable in amplitude with the corresponding mean values in overlapping 
intervals and if they were nearly in phase. The absence of effects on the mean turbulent 
intensity at high forcing frequencies. say 1; < 8, observed here is consistent with the 
measurements of the oscillating velocity zi analysed in the next section, which show that 
a22/ay is essentially confined in a layer of thickness 2; in this case. The contribution of 
the oscillating flow n a 2 2 / 2 i t o  the total turbulent production - (u'z,') a ( u ) ~  could, 
therefore, be locally appreciable only in the unlikely situation where the modulation 

= 0 and 
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FIGURE 6. Ratio of unsteady to steady time mean wall shear stress. For legend see table 3 .  

-uTcould reach large values between y+ = 0 and 1: and, even then, there would be 
an excess production in a thin layer so that its contribution to the production 
integrated over the whole boundary layer would still be small. Conversely, when 1; and 
the forcing amplitude are large enough, as in the present case for 1: = 34, the oscillating 
flow can appreciably contribute to the total production and raise the turbulence level 
as observed here. 

4.1.3. The wall shear stress 

Figure 6 shows the ratio of the unsteady to the steady mean wall shear stress 
corresponding to the same mean velocity us. 1:. These measurements were performed 
by changing the imposed frequency by a factor of 40 and the imposed amplitude by a 
factor of 7, but also by modifying the mean Reynolds number while the oscillation 
period was kept constant, in order to prove the validity of the similitude parameter I:. 
It is seen that within a scatter of + 14 % and - 9 % the time-mean wall shear stress is 
not affected by the oscillations. This is a priori surprising because of the nonlinear 
relationship between the wall shear stress and the centreline velocity in turbulent flow. 
It will be shown below that, at low frequencies (1: > 20), the wall shear stress is in phase 
with the centreline velocity as may be expected in the quasi-steady flow (4s). The 
Blasius formula may then be assumed to hold at any instant of the cycle so that 

(7 )qs  = U,) h l v ) P  P( uc)2. 
If TsTsteady is the shear stress corresponding to the mean velocity, 

We write 

(U, )  = U,( 1 + a E  cos wt) and (7)qs  = T ~ ~ ~ ~ ~ ~ (  1 + a , m  cos wt). 

Then expanding and retaining two terms yields 
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1 ' 1 ' I . I * I = I .  

For the largest amplitude utz = 0.7 the result is: Tqs.= 1.16TSteady. 
The predicted increase in 5 due to nonlinear effects is also at most 16 % in the present 

experiments and is nearly buried in the experimental scatter. One may note the 
tendency of the solid squares, corresponding to 70 % amplitude, to lie on the average 
above the value one. 

From the present measurements, it is not possible to conclude that there is a drag- 
reducing (or increasing) effect of roughly 9 YO or less. The drag reduction reported by 
Mao & Hanratty (1991) was observed with an imposed frequency (c = 6) which is 
significantly larger than the maximum investigated here. Although such a tendency was 
also recently observed by us for 1; < 6 (Tardu & Binder 1993, figure 2a) one should be 
careful in drawing immediate conclusions owing to the limited confidence in the 
indirect measurements and the treatment of reversing flows. 

4.1.4. The turbulent wall shear stress fluctuations 
The time mean r.m.s. of the turbulent fluctuations of the unsteady wall shear stress 

is plotted on figure 7. (7/7/)f is 0.26 to 0.45 times T~~~~~~ with a mean value of 0.34. In spite 
of the difficulty in making such measurements - for instance, values as low as 0.06 have 
been reported in the literature (Chambers, Murphy & McEligot 1982) - the results 
agree well with the steady values of Sandborn (1979). The mean value of 0.34 compares 
well with the 0.36 found from the direct simulation data of Kim, Moin & Moser (1987). 
No trend was observed as the frequency varied suggesting that the r.m.s. value of the 
fluctuating shear stress (.'.'); is unaffected, as was found approximately for n. 

These results are remarkable when it is considered that in some regions the 
amplitude of the oscillations was greater than 100% of the local mean flow, so that 
reverse flow occurred over 25 YO of the cycle. At these large forcing amplitudes A,-,/zt, = 
15 and the energy in the periodic flow is at least 25 times greater than in the turbulent 
fluctuations. In spite of this there is no apparent change in the statistics of the mean 
flow, implying that the mean flow is essentially decoupled from the large amplitude 
oscillations. 
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4.2. The characteristics of the cyclic variation 

All the oscillating quantities u", ?, a and are functions of t / T .  The full 
representation of these time functions for all the points across the flow and all the 
values of the forcing amplitude and forcing frequency would be very cumbersome. 
Therefore, as mentioned earlier only the amplitude and phase of the fundamental 
Fourier mode are retained. The description of an entire function by only two numbers 
is acceptable in as much as the higher modes are comparatively small. This is always 
the case here even though the forcing amplitudes were large enough to generate 
nonlinear effects. Conversely, in order to make a fair judgement on the importance of 
the oscillating flow data it should be kept in mind that every point on the amplitude 
and phase plots summarizes an entire time-dependent phase-average curve. 

4.2.1. Amplitude and phase shifts of the velocity oscillations 
The results concerning the oscillating part of the velocity field are presented as a 

function of y ,  = y/l,. This scaling serves to emphasize coincidences with and departures 
of the oscillating velocity from the viscous Stokes solution. In unsteady turbulent 
boundary layers, the usual lengthscales of I ,  or 6 would only be appropriate for the 
similarity of quasi-steady properties of the flow. The parameter 1; = ls/lv, however, 
indicates how far the viscous Stokes layer would penetrate into the turbulent boundary 
layer if it were unaffected by the turbulence. 

The profiles of the amplitude and of the phase shift of the fundamental mode of the 
velocity oscillations u" for the five different forcing conditions are presented in figures 
8(a) and 8(b). Only the fundamental is considered because it contains most of the 
energy of the oscillations at all y-positions. The first harmonic, for instance, is typically 
less than 5 %  of the fundamental. 

The most striking result on these figures is that for the highest frequency 
investigated, corresponding to 1; = 8.1, both the amplitude and the phase shift are 
close to the viscous Stokes solution. Thus, a phase shift of +33" has been measured 
at y ,  = 0.6, while the Stokes solution for this point gives + 3 1" and the extrapolation 
of the phase-shift to y ,  = 0 falls close to +45" which is characteristic of the Stokes 
solution. 

The explanation of the behaviour of the oscillating velocity u" in the high-frequency 
regime lies in the fact that within a distance y+ = 12 from the wall viscous effects 
dominate over turbulence effects. In steady turbulent flow, for instance, the ratio of 
viscous to turbulent shear stress is larger than one up to y+ = 12. Now, the purely 
viscous Stokes layer has a thickness of roughly 24, since at a distance 1, from the wall 
the amplitude and phase of u" are respectively 85 YO and 70 YO of the values at infinity 
and since beyond 21, the velocity oscillates essentially as a plug flow in which the 
oscillating vorticity is zero. Thus, when 1: < 6, u" reaches the asymptotic outer values 
under the (nearly) sole effect of molecular viscosity before the turbulence can effectively 
enhance the diffusion of vorticity. An equivalent argument is to consider that, if 
molecular viscosity should diffuse the oscillating vorticity to a distance less than 121, 
during the period T, it is necessary that 

(121J2/V < TI, 

i.e. 2; < 6.8. This condition is close to the one given above. 
Thus, viscous diffusion alone governs the removal of unsteady vorticity from the 

wall for frequencies such that 1; < 6. Turbulence does not participate in the diffusion, 
because at distances from the wall where turbulent diffusion becomes important there 
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FIGURE 8. Evolution of the periodic streamwise velocity oscillations with distance from the wall. (a) 
Amplitude profiles: -, viscous Stokes solution. (For legend see table 2.) (b) Phase shift profiles 
with respect to the centreline velocity oscillations. 

is no vorticity left to diffuse. Considering the qualitative nature of these arguments, it 
is clear that the inferred upper limit of 1; of 6 to 7 for purely viscous oscillating flow 
is only approximate. The present results which show that the viscous behaviour is well 
verified for 1; = 8.1 as well as other observations presented below indicate that this 
upper limit is somewhat higher, close to 10. 

It Collows from the same arguments that the oscillating velocity should progressively 
depart from the viscous Stokes solution when 1; is increased beyond this critical value. 
This is well born out by the results on figures 8(a) and 8(b) and it is particularly clear 
for the phase shift which appears as a more sensitive parameter than the amplitude. It 
is seen that the maximum phase lead near the wall progressively decreases with 
increasing values of 1; and becomes negative, i.e. a phase lag, at the two lowest 
frequencies corresponding to 1; = 23 and 34. In these two flows the phase shift with 
respect to the centreline velocity is always less than 10". This represents less than 3 % 
of the cycle and stresses the need for great care in the measurements. 

Although the changes in the amplitude profiles of il are not dramatic in this 
representation, it is clear that at the lowest frequency for 1; = 34, the profile is both 
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FIGURE 9. Instantaneous velocity profiles in the presence of reverse flow. Uc = 16.9 cm s-', 
UZ = 0.64; 1; = 8.1. 

steeper near the wall and thicker than the Stokes profile. This is in keeping with the 
effect of turbulence in steady flows: it increases the shear stress in the wall region and, 
therefore, the viscous stress at the wall, and at the same time the large scales diffuse the 
vorticity to greater distances into the flow. It is seen that for 1: = 34, there is oscillating 
vorticity to a distance from the wall of approximately y+ = y ,  1: = 8 x 34 = 272, while 
at the highest frequency of the experiments it extends only to y+ = 2 x 8 = 16. 

Even though the flows in the present experiments were forced with a centreline 
velocity amplitude of 64 YO, the results on the oscillating velocity agree surprisingly well 
with the earlier measurements (Binder & Kueny 1981) performed in flows with small 
oscillation amplitudes (aG = 5 or 3 %). On figures 8(a)  and 8(b)  there are also a few 
points corresponding to a forcing with a* = 30 YO and 1; = 8.1. These points are close 
to those of the flow forced at the same frequency and at larger amplitude. It may, 
therefore, be concluded that, in the case of channel flow, nonlinear effects due to the 
forcing amplitude are small up to centreline amplitudes as large as 64%. This is not 
exactly what might be expected at a first glance, especially if it is remembered that at 
the higher frequencies the local amplitudes become larger than 100% near the wall. 

Attention is finally drawn to the fact that the amplitudes in the immediate 
neighbourhood of the wall are slightly below the Stokes curve at the highest 
frequencies for 1; = 8.1 and 16. This is an apparently paradoxical result since it means 
that the oscillating wall shear stress is less than the purely viscous value in turbulent 
channel flow ! Experimental inaccuracies were first suspected, especially since near-wall 
measurements are particularly difficult. These points were, therefore, checked with care 
and this result was confirmed. This point will be further discussed in the section on the 
oscillations of the wall shear stress in 54.2.3. 

4.2.2. Observation of reverse $ow 
One of the more interesting consequences of the Stokes-type flow is that at 

sufficiently large amplitude, reverse flow without separation can occur near the wall 
over part of the oscillation cycle. Reverse flow appears at a given point when ( u )  < 0 

5 FLM 267 
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FIGURE 10. Observations of reverse flow compared with the Binder-Kueny criterion, given by the 
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Visualizations: no reverse flow; +, Karlsson (1959); x ,  Jarayaman et al. (1982) 

which implies that A ,  > u. The instantaneous profiles corresponding to 1; = 8.1 and 
uG = 0.64 shown on figure 9, demonstrate the existence of negative velocities in some 
parts of the oscillation cycle. 

In the near-wall region where both A ,  and u vary linearly with y ,  the condition 
A ,  > a is equivalent to A,,,,, > &/dy and therefore equivalent to A? > T. If it is 
further assumed that the oscillations follow the Stokes solution, i.e. A? = %/2,uA,JI8, 
the condition for reverse flow is then 

2/2A,-,/l, > q / v ,  

i.e. A,,/iiT > 1:/.\/2 or A& > 1:/1/2. 
This simple criterion first derived by Binder & Kueny (1981) combines the amplitude 

and the frequency of the oscillation in one formula and shows that the occurrence of 
reverse flow will depend upon both parameters. 

The validity of this criterion for flow reversal is amply confirmed by the experimental 
observations plotted on figure 10. These have been made with three different 
techniques : a frequency-shifted LDA, flush-mounted hot-films, and flow visualizations 
with a hydrogen bubble wire either parallel or perpendicular to the wall as well as with 
dye injected through a slot in the wall. It is seen that the values lying above the line 
A7JiiT > 1:/2/2 experience reverse flow as predicted by the above criterion up to 

= 20. For larger values of I:, the line of separation between flows with and flows 
without reversal lies below the straight line of the criterion which means that flow 
reversal will occur for lower amplitudes than those predicted for a given 1;. This is 
consistent with the steepening of the velocity amplitude gradient at the wall produced 
by the turbulence at the larger values of l:, which is clearly demonstrated by the 
measurements of the oscillating wall shear stress discussed in the next section. 

The earlier observations of reverse flow of Karlsson (1959) and Jarayaman et al. 
(1982) also plotted on the figure are in agreement with the criterion. The observations 
of the latter authors are particularly interesting because they were made in a mild 
adverse pressure gradient and thus prove indirectly that Stokes flow may still occur in 
such circumstances. We have recently made similar observations in a small-angle (2.4") 
diffuser. 
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FIGURE 11. Oscillations of the wall shear stress us. frequency parameter 1; (for legend see table 3). (a) 
Amplitude normalized by the Stokes value. (6) Phase shift with respect to the centreline velocity 
oscillations. 

The flow reversal of the three visual observations on figure 10 which do not conform 
with the criterion was probably due to turbulent fluctuations near the minimum 
velocity. On the other hand, the linear part of A: may extend further into the outer 
layer than u" which gives an area of negative velocity in the internal part of the flow 
and this is not foreseeable with the criterion given above. 

4.2.3. The oscillation of the wall shear stress 
The evolutions of the amplitude A? and of the phase shift @? - QG of the oscillating 

wall shear stress are plotted us. I: on figures 11 (a) and 11 (b). 
The amplitude is non-dimensionalized with the amplitude of the viscous Stokes 

stress at the same frequency, i.e. = .\/2,uAG/lS. The ratio Ai/Ai(stokes) thus 
involves entirely distinct quantities which, moreover, are measured with different 
techniques: Ai is measured with the wall hot-film gauge while is determined 
from the frequency and the centreline amplitude measured by LDA. The data on figure 
11 were obtained by varying the frequency and the amplitude of the imposed 
oscillations respectively by a factor 50 and 7, and by changing the shear velocity via the 

5-2 
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centreline velocity by a factor 1.6. It should be stressed that 1: is more sensitive to 
changes in u,, i.e. to the Reynolds number, than in u since it is directly proportional 
to U, but only inversely proportional to the square root of w .  The fairly good collapse 
of the data points for both the amplitude and phase shift on single curves is, therefore, 
physically significant and supports the claim that 1; is the appropriate similarity 
parameter for the near-wall unsteady flow. 

At the higher frequencies, 1; < 10, the amplitude of T is close to the Stokes value and 
the frequency shift with respect to the outer velocity oscillation approaches 45" as 
predicted by the Stokes solution. These wall shear stress measurements also clearly 
confirm the conclusion drawn from the velocity measurements, namely that in the 
high-frequency regime the oscillating flow ignores the existence of the turbulence. 

A neat confirmation of this result was recently provided by measurements of the 
acoustic impedance of pneumotachographs to forced oscillations. The method of 
forced oscillations is a promising non-intrusive technique for the physiological 
investigation of the lung, which does not require the cooperation of the patient who 
can breathe freely through a supply tube during the test. The method was developed 
under the restriction that the flow in the supply tube was laminar. Louis & Isabey 
(1990) have recently shown that this severe restriction may be relaxed and that the 
method is still applicable when the flow is turbulent provided that the forcing frequency 
is high enough to make 1; smaller than 10. Their measurements show that the 
impedance in turbulent flow departs from the viscous values only once 

It is further observed that both the amplitude and the phase shift of (7) move 
rapidly away from the viscous limit as soon as 1; > 10. When 1: = 20 the phase shift 
is nearly zero and the amplitude is close to the quasi-steady turbulent value as discussed 
below. 

The phase-shift data of Menendez & Ramaprian (1983), Mao & Hanratty (1986) 
and Houdeville, Jullien & Cousteix (1984) (taken in a flat-plate boundary layer) are 
also shown on figure 11 (b). The agreement with the present measurements is quite 
satisfactory when it is kept in mind that 10" is less than 3 YO of the cycle. The phase shift 
us. curve seems thus to have a universal character. It is remarkable that this curve 
does not depend on the amplitude of the oscillations. 

Houdeville et al. (1984) encountered serious difficulties in measuring the wall shear 
stress oscillations with the flush-mounted hot film in air owing to the parasitic heat 
transfer through the substrate which produces a considerable reduction in the 
frequency response. In order to minimize this unwanted transfer these authors 
developed a probe where a flush-mounted hot-film is placed above a small cavity. The 
results of these authors quoted above were obtained with such a probe. Our results 
obtained with a similar probe in water are shown on figure 12. The phase shifts 
measured in this way were systematically higher than those obtained with the flush- 
mounted film. For instance, at the lowest Z:, phase shifts as high as 60" were obtained 
(figure 12b). A small change in the wall configuration may thus have a noticeable effect 
on the probe response. 

Close inspection of the high-frequency data of figure 1 1 (a) reveals that the amplitude 
ratio is systematically smaller than one at the highest frequencies. There is actually a 
dip in the curve around lfi' = 15. This surprising result of a shear stress smaller than the 
purely viscous value - consistent with the observations made earlier on the gradient of 
the amplitude of the oscillating velocity near the wall- was noted before by 
Ronneberger & Ahrens (1977) in their investigation of pipe flow subjected to small- 
amplitude acoustic forcing. The dip in the amplitude ratio near I: = 11 is unmistakable 
in their plot owing to the smaller scatter in their data. These authors attempt to explain 

> 10. 
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FIGURE 12. Oscillations of the wall shear stress measured with the Houdeville-Cousteix gauge. 
(a)  amplitude, (b) phase shift. 

this behaviour with a model which takes the effective viscosity (the molecular plus the 
eddy viscosity) with distance from the wall into account. Because of this increase in 
effective viscosity, the outward diffusing shear wave is partly reflected back towards the 
wall by the buffer layer and the resulting shear wave is weaker if the interference is 
destructive. This accounts in a qualitative way for the minimum in the Ai/Ai(stokes) 
data. Indeed, if I: < 10 then the shear wave is already strongly attenuated when It 
reaches the buffer layer and the reflected wave is weak. On the other hand, when 
1: > 15, the shear wave is enhanced by turbulent diffusion and Ai > 
Ronneberger & Ahrens (1977) find fair quantitative agreement with their data by 
assuming a rigid wall at y+ = 15, i.e. total reflection at this location. With the more 
realistic assumption of an effective viscosity where the eddy viscosity is based on the 
Prandtl mixing length and the formula of van Driest, the computed Ai/Ai(stokes) curve 
unfortunately does not display a minimum. One may speculate that a time-dependent 
eddy viscosity which could in particular be phase shifted with respect to the shear could 
perhaps account better for these observations. 

The shear variation was also found to be smaller than the Stokes value at high 
frequency in the data reported by Mao & Hanratty (1986) as it is seen in figure 1 1  (a). 
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These authors have developed a relaxation model whereby the flow close to the wall 
sees an effective pressure gradient which introduces a lag between the imposed velocity 
oscillations and the change of scale in the viscous wall region. This method predicts 
quite well the decrease of Ai/AF(stokes) in the high-frequency regime. This decrease was 
however not confirmed by the subsequent measurements of Finnicum & Hanratty 
(1988). The authors explained these differences by a possible pipe diameter effect. The 
hydraulic equivalent diameter of the channel used in this study is indeed very close to 
the pipe diameter of Mao & Hanratty (1986) but significantly larger than in Finnicum 
& Hanratty's experiments. 

The amplitude of the oscillating shear stress increases monotonically with 1; and is 
larger than the Stokes value when 1; > 20. In the present experiments values nearly 
three times larger than the viscous stress at the corresponding frequency have been 
measured. As pointed out earlier, this is due to turbulent diffusion once the oscillating 
layer is thick enough to penetrate into the region where turbulent diffusion dominates 
molecular transport. 

From the relationships derived for the quasi-steady limit in $4.1 one obtains for the 
amplitude of the fundamental mode 

Since in the present experiments iiJU, = 1/22, it follows that 

A?(@) = 0.056 
21 2.- c 

A i ( S t o k e s )  1 + aauc 

The lines for aE -A 0, and aE = 0.7,l are drawn on figure 11 (a). It is seen that the 
data are in satisfactory agreement with this simple relationship: the points for the 
smaller amplitudes are close to the line calculated with aE = 0 while the points for 
the 70 % amplitude case fall - but for one exception - on the line corresponding to 
aE = 0.7. 

4.2.4. The modulation of the longitudinal turbulent intensity 
The amplitude profiles of the modulation u 7  of the longitudinal turbulent intensity 

for the four flows investigated are plotted in three ways in order to illustrate different 
features. 

The variations in the absolute level of Am across the flow and with the oscillation 
frequency (az = 0.64 in all four cases) are most clearly shown by normalizing the 
amplitude with the constant mean shear velocity as on figure 13 (a). This representation 
also facilitates comparison with the mean turbulent intensity of figure 5 and it is seen 
that amplitude profiles are similar to the mean profiles with a peak around y' = 12-1 5. 

The most important observation is that the higher the oscillation frequency, the 
smaller the modulation of the turbulence is. Thus, the maximum value of A,Tfor the 
highest frequency, 1; = 8.1 is only half the value for 1; = 24 or 34 and it tends to zero 
more rapidly. At the highest frequency At= is zero as soon as y+ > 60 while at the 
lowest frequency I; = 34, A z i s  still about 5 q  at y f  = 100. This behaviour is amply 
confirmed by the modulation of the turbulent shear stress that will be discussed in the 
next section. 

The interpretation of this observation is that at the higher frequencies the turbulence 
can no longer follow the imposed oscillation and has an attenuated response. This 
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contradicts some earlier ideas according to which the interaction of the imposed 
oscillations with the turbulence should be most intense when their frequencies are 
comparable, as happens when resonance occurs (Mizushina et al. 1973; Ramaprian & 
Tu 1983). The most energetic turbulent eddies near the wall have a frequency W' z 0.1 
according to the spectra measured at y+ = 15 by Compte-Bellot (1965) while the 
frequency of the imposed oscillations in the = 8.1 case is only 0.03. Clearly the 
response of the turbulence is already attenuated at frequencies lower than that energy- 
containing eddies. 

The modulation of the local relative turbulent intensity ( A m ) i / A ,  of figure 13(b) is 
reminiscent of the ratio (U'")"IU, of the mean values. It is seen that the attenuation of 
the modulation of the turbulence in the high-frequency case is brought out even more 
clearly in this representation since near the wall there is a factor 3 difference between 
the high-frequency values and those of the three other cases. The good collapse of the 
points of these latter flows up to y+ = 20 is also noteworthy. There is, hence, a sharp 
change in the turbulence response when 1; decreases below the value 16. 

Comparison of the modulation of turbulent intensity with the time-mean value 
would be misleading in the representation of figure 13(b). Indeed, in the quasi-steady 
limit ( U ' U ' ) / ( U > ~  should be a function of ( y ' )  only. Indeed the law of the wall 
u3 = f(y') and (u '2p /~ ,  = g(y') in steady flow yields 

In the quasi-steady limit one should have then 

where ( y ' )  = ( u , > y / v .  Now F i s  a slowly varying function of y+ (Eckelmann 1974) so 
that for small-amplitude forcing one should have 

($$)(qs, z const. 

Hence 

i.e. 

- _y- 

u'u'( 1 + u'u/ /u/u/)  
u"( 1 + 2u"/u) 

z const. 

which means that the turbulence is in phase with the velocity and that 

A u q -  A -  
-- ~ 2 4  or a m =  2a,. 
u'ul u 

In order to compare the turbulent intensities of the periodic and of the mean flow, 
one should thus consider A z / &  and m/2 or equivalently the relative amplitudes 
a , ~ a n d  aB and not the ratio with the r.m.s. values. The plot of a,7/2a, (figure 13c) 
shows again the sharp difference between high-frequency case and the others : the 
turbulence drops at least by a factor 1 and by as much as a factor 4 throughout the flow 
in the high-frequency case. It is observed that a m / 2 a ,  is closest to one in the 
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Time lag. 

neighbourhood of the wall but does not quite reach this value. This is not surprising 
considering that one is the quasi-steady small-amplitude limit and that 64 % forcing 
amplitude of these flows is certainly not small. One may, on the contrary, be rather 
surprised that the value au7 /2a ,  is so close to one for such a large-amplitude forcing, 
in other words that the turbulence response does not saturate more rapidly with the 
forcing amplitude. 

The phase shift profiles of (u'u') with respect to the velocity oscillation (U,) ,  drawn 
on figure 14(a), show that the modulation of the turbulence always lags behind the 
modulation of the velocity as in a relation between cause and effect. It is clear from this 
figure that the lag decreases with 1; at a fixed ys  - the changes would be even sharper 
in terms of absolute distance or of y+ - and that it increases with distance from the wall 
for a given 1; at a rate that varies inversely with 1;. 

The first feature is expected since one should approach the quasi-steady regime as the 
imposed frequency is decreased. But, that the lag still reaches 50" at 1; = 34 is less 
evident. By comparison with ( u )  and (7) whose phase shifts with respect to the 
imposed centreline oscillations are quite small when I: > 20, it is clear that the 
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turbulence is slower to reach the quasi-steady regime. This is somewhat similar to 
observations on the streamwise development of steady turbulent flows which show that 
the mean velocity is more rapidly established than the turbulent intensity. 

The second feature, i.e. the increase of the phase lag with y+ ,  suggests considering the 
time lag 

where the @ are in radians. The plot of At+ QS. y+ of figure 14(b) shows that, for 
yf > 30, the points for the four forcing frequencies are scattered about a single straight 
line with a slope dy+/d(At+) E 0.4. It appears, thus, that the modulation of the 
turbulent intensity is propagated away from the wall with a constant speed of 0.4 wall 
units. This is equivalent to saying that the maximum (or the minimum) of the turbulent 
intensity (u’u’)(t/T) is transported away from the wall with this speed. Now, 
0.5 dy2/dt is a diffusivity and, therefore, the diffusivity with which the maximum/ 
minimum of (u’u’) diffuses away from the wall is 

1 dy+’ dy+ 
2 dt dt 

y;q 2 -- - - y+- z 0.4j1’. 

But this is exactly the value of the momentum eddy diffusivity v l  in the logarithmic 
layer of the mean velocity profile. Hence vs E vt. Furthermore, in one-point closure, 
like the k-s model, the transport or diffusion term in the equation of the turbulent 
kinetic energy k is modelled as a gradient diffusion with a diffusivity up = v t /gk ,  where 
crk is an empirical constant chosen such as to optimize the agreement between 
experimental data and predictions in some basic shear flows. The standard value of gk 
is I ,  i.e. vk = vt (Rodi 1980, pp. 28-29). Consequently, v , ~ w  vk, i.e. the modulation 
of the longitudinal turbulent energy in the inertial sublayer diffuses away from the wall 
with a diffusivity equal to the diffusivity of time-mean turbulent kinetic energy in the 
corresponding steady wall flow. Implied in this conclusion is that most of the 
production of (u’u’) occurs near the wall in the layer -I;+ < 30 and that it is weak 
beyond. This is quite compatible with the smallness of the oscillating gradient (au/2y) 
once y+ > 1;. Also implied is that the dissipation - which accounts for the decrease of 
A z  with y+ - is either sufficiently small or in phase with (u’u’). 

4.2.5. Modulation of the turbulent intensity of the wall shear stress 
The data on the amplitude A,Tand on the phase shift @z- Qba of the modulation 

of the phase-averaged turbulent wall shear stress fluctuations (7’7’) is plotted us. 1: on 
figures I5(a) and 15(b). Various normalizations were tried for AT7.  The most 
satisfactory one is FA,, applied in figure 15(a), rather than t as previously used by 
Binder et al. (19856). Indeed 

and a;r;l.la, may be interpreted as the response of the turbulence to the forcing (7). In 
the quasi-steady limit (7’7’)/(7)’ must be independent of time. This ratio may be 
written as follows after expanding : 

__ c1- 

(7’7’) 7’7’ 1 + 7/7’/7’7’ 

(7)’ 5’ ( 1  +~aa,2>+2.?/r-t(~’/~~-_a~)‘ 
-- - 
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if higher harmonics are neglected, the term +u$ is added and subtracted in the 
denominator in order to make the average variation over the cycle zero. If only the 
first-order oscillating terms are retained, this expression becomes 

- -- 
(7’7’) 7’7’ 1 1 +7’7’/7’7’ 

Quasi-steadiness of (7‘7‘)/(7)’ requires than that the right-hand side is independent 
of time, hence 

or 
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Thus in the quasi-steady limit, i.e. I:+ cc 

Finally, if we substitute = fa,-, (see Q;4.1), this expression becomes 

0.24 g)qs = 1 +%a& * 

The values of this ratio for small amplitudes and the for the maximum centreline 
amplitude az = 0.70 are respectively 0.24 and 0.14. These values are shown on figure 
15(a). It is seen that the experimental results follow these predicted trends. Considering 
the approximations required and the experimental scatter in these measurement one 
would not expect better qualitative agreement. 

The most striking feature of figure 15 (a) is the sharp decline of the amplitude at the 
lower values of I:, i.e. at the higher forcing frequencies, as was observed for the 
turbulent velocity fluctuations discussed in the previous section. The attenuation of the 
modulation of the turbulent wall shear stress fluctuation is, however, sharper than that 
of the velocity fluctuations: there seems to be a real cutoff at 

Analysis of the phase shift data showed that the time lag, 
M 10. 

A t 5  = -(@-- 1 7 '  @,-,)lw+, 

was a constant irrespective of the frequency or of the amplitude of forcing. The plot 
of @r- @E us. w+ rather than 1; is, therefore, more appropriate. Figure 15 (b) indeed 
shows a good collapse of the data points about a single straight line. The slope of this 
line corresponds to At+ = 90. This time is smaller than the relaxation time T; = 200 
of the model proposed by Mao & Hanratty (1985). On the other hand, according to 
this model, the modulation of the turbulence should begin to decrease when T+ < T;, 
i.e. once I: < 8. The measurements show that the response of the turbulence in the 
viscous sublayer has already started to fall off at 1: = 15 and in some instances at 

= 20, which correspond to forcing periods T+ = 700 and T f  = 1200 that are quite a 
bit larger than the relaxation time. This observation points into the same direction as 
the remark made in the previous section about the damping of A z  which begins at 
frequencies that are larger than the energy-containing eddies. 

4.2.6. Comparison of the.frequency response of the turbulent velocity and wall shear 
stress JIuc t uat ions 

The response of the modulation of the turbulence has been further investigated by 
making hot-film measurements at y+ = 15 where the maximum amplitude A,zoccurs 
for nine different frequencies and for four amplitudes: IT = 7.3, 8, 9.5, 12, 16, 24, 30, 
44,40; a~ = 0.1 ; 0.2; 0.3; 0.4. At the small values of 1,' (7.3 and 8) the data were only 
gathered at the 20 YO amplitude because of the mediocre measurement accuracy near 
or in conditions of flow reversal. Simultaneous velocity and wall shear stress 
measurements were performed in the 20 YO amplitude flows. 

The responses of the turbulence at yf = 15 and at y' = 0, a,T/a, and az,/a7 are 
plotted on figure 16(a). The LDV results for aG = 0.64 discussed earlier (figure 13) are 
also shown on the figure. The decrease of the response with frequency is again clearly 
demonstrated. Noteworthy is the grouping of the values of a,y/a, us. w+ for the 
different amplitudes about a single curve when w+ > 0.008, which points to an 
apparently linear dependence of the turbulence on the local value of the velocity 
oscillation and not on the centreline velocity. There is obviously scatter of the data 
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points about this curve but it should be judged by keeping in mind that the ratio 
amla, involves four different quantities. The larger scatter at low forcing frequencies 
may indicate a contrario that other factors beside aB influence the modulation of 
turbulence. 

It is seen on figure 16(a) that the response of the turbulent wall shear stress 
fluctuations differs from that of the turbulent velocity fluctuations at y+ = 15, namely 
it begins to decline at lower forcing frequencies and decreases more rapidly with w'. In 
the quasi-steady regime and in the small-amplitude approximation one should have 

arT = $aF = 2, - 4 UC' 

The value az / a i  = 1.75 at the lowest frequency in the a@ = 0.20 case is thus exactly 
equal to the quasi-steady limit. 

Another representation of the same data is shown on figure 16(b) where the relative 
amplitudes of the turbulence modulation are normalized with the corresponding quasi- 
steady values. az(qs) has been computed from the relationship developed in the 
previous section. The relative amplitude of the modulation auT(qs) at the fixed position 
y+ = 15 is computed by assuming that the distribution (u'u')/(u,") = f ( ( y f ) )  is 
independent of time - which implies zero phase shift between (u'u') and (7) - and is 
the same as in steady flow. For convenience we write ( y ' )  = y(u , ) /v .  Since ( y ' )  
varies during the cycle, (u'u') varies as the product f ( (  y')) (u,"). Thus, if during the 
cycle the representative point stays on a portion of thefos. y+ curve wherefis either 
an increasing, a constant or a decreasing function of y+, then aUq, is either larger, 
equal to or smaller than a;. For instance near the wall in the region yt < 12 where 
(u'u')i/q cc y+, one obtains if (y ' )  < 12 at all times 

(u'u') cc (u,") { y + 2 )  cc (u:) ,  

i.e. a u ~ ( q s )  z 2ai(qs). On the other hand, about the mean position yf = 15 of interest 
here which is on the decreasing portion offi aUTcqs, x 0.8a,,,,,. The (U")i/q us. y+ 
distribution measured by Johansson & Alfredsson (1982) was used too for the 
computation of The distribution in the range 0 < y s  < 50 was divided into 
three parts and a least-squares linear approximation was fitted to each. 

The plot of figure 16(b) which shows trends very similar to those of figure 16(a) 
serves to emphasize the fact that the modulation of the turbulence is a monotonically 
decreasing function of the forcing frequency. Also shown on this figure are the 
measurements of Finnicum & Hanratty (1988) obtained with the electrochemical 
technique. The values of A , ~ $ / F  of these authors have been converted to a,v/aF(qs, by 
making the linear assumption which yields a(G;  = +aFand the assumption uTqqs. = 

4aE. It is seen that the results of these authors agree remarkably well with the 
present ones. The small increases in the lower frequency range in a few cases for aG are 
smaller than the experimental uncertainty and therefore not significant. The increase 
in the modulation of the turbulence observed by Sherner, Wygnanski & Kit (1985) is, 
therefore, not confirmed by the present measurements. These authors do, however, 
qualify their conclusion by pointing out that the absolute differences due to changes of 
the forcing frequency were always small. The contradiction between the two sets of 
observations may, hence, be more apparent than real. Finally let us point out that the 
characteristics of the response of the wall shear stress intensity when the imposed 
frequency is further increased change considerably as reported by Finnicum & 
Hanratty (1988) and confirmed recently by Tardu & Binder (1993). 

The differences in the amplitude response of (7'7') and (u'u') pointed out on figure 
16(a) are even more contrasted on figure 16(b). The lower-frequency response of (7'~') 
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with respect to that of (u’u‘) implies a larger relaxation time of the turbulence in the 
immediate vicinity of the wall as compared to that in the buffer layer. Another 
manifestation of the relaxation time is the delay between the turbulence modulations 
and the oscillations of the corresponding quantities which at first sight may be 
considered as the forcing terms. The time delays inferred from the phase shift data of 
figure 16(c) are consistent with the conclusion drawn from the amplitude response, 
namely that the time lag of (7’7’) with respect to (7) is about twice as large as the lag 
of (u’u’) with respect to ( u )  at a given frequency. This figure also shows two distinct 
frequency regimes already alluded to in the previous section. (Note that on figure 15 (6) 
the maximum frequency is only w+ = 0.02 and that the phase shift is with respect to 
(U, )  and not with respect to (7) as on figure 16(c). The difference in the phase shift 
on the two figures corresponds therefore to the phase lead @?-@&.) In the high- 
frequency regime as w+ > 0.025, the time lag is roughly half that in the lower one 
m+ < 0.015. 

It may be remarked that the end of this low-frequency regime corresponds to 
1; = 12 which is close to value 1; = 10 where the oscillating field deviates from the 
Stokes solution. Even more relevant may be the observation that the beginning of the 
high-frequency regime is close to the average bursting frequency at y+ = 15 in steady 
flow, w; = 2nfz = 0.036 (Bogard & Tiederman 1986; Coughran & Bogard 1987). It is 
not really unexpected that the turbulent response changes when the forcing cycle 
becomes shorter than the interval between the events that are responsible for a large 
part of the turbulence production. 

The reason why the turbulence modulation in the viscous sublayer has a relaxation 
time that is 2 to 3 times larger than in the buffer layer is an open question. In the present 
work only the global response of the turbulence has been investigated. Some insight 
into the question would possibly be gained by analysing the spectral contents of (u’u’) 
and (7’7’) for different forcing frequencies. This could be done by frequency filtering 
the signal prior to the phase averaging. To perform such an analysis would obviously 
be an enormous task that is beyond the scope of this paper. As a first step, however, 
some characteristics of the small turbulent scales have been extracted from the u’(t)- 
signal. These results are described in the next subsection. 

4.3, Modulation of the small scales 
The Taylor microscale and the zero crossing frequency, the skewness and the flatness 
factors of the time derivative du‘/dt have been determined at y+ = 15 in flows forced 
with an amplitude aG = 20% and at 1; = 7.2, 9.5, 12, 16, 30 and 60. 

The instantaneous turbulent fluctuation u’(t) = u(t)  - (u ( t ) )  was computed after ( u )  
was obtained, stored on the disk of the Norsk-100 computer and processed in various 
ways. The time derivative was obtained with a 32-point finite-impulse-response zero- 
phase shift filter. The cutoff frequency of the digital derivator was set atf+ = 1 in order 
to avoid noise contamination of the skewness and flatness factors of du‘/dt (Kuo & 
Corrsin 197 1). 

The ‘dead-band’ effect on the zero-crossing frequency (due to the presence of noise 
which produces spurious crossings) was checked in one case by measuring the crossing 
frequency for four increasing levels L( u‘u’):. This frequency reaches a plateau near 
L = 0 showing that the S/N was adequate. The same conclusion was reached by 
varying the cutoff frequency of the filter. 

The phase averages of the zero-crossing frequency ( N o )  of the turbulent intensity 
( u ’ ~ )  and of the moments ((du’ldt)“) with n = 2, 3 and 4 were determined. These 
phase averages are statistically well converged as shown on the examples on figure 17. 
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For a Gaussian signal the timescale based on the zero-crossing frequency 
No:  { A )  = 1/(2n(No)) is the same as the Taylor microscale 

A :  ( A 2 )  = (u’2)/((du’/dt)2) 

(Liepmann 1949). It was experimentally established by Liepmann (1949) and 
Sreenivasan, Prabhu & Narasiniha (1983) that the equality X+ = A+ still holds for near- 
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wall turbulence in steady flow despite its non-Gaussian character. Figures 18 and 19 
show that this is also true in unsteady flow since the time-mean values, the amplitudes 
and the phase shifts of ( A )  and ( A )  remain close when the forcing frequency is 
varied. This agreement is rather remarkable considering that the methods for 
determining A and A are completely independent. It shows that the methods used are 
basically correct. 

It is seen that time-mean values of the microscales h+ and x+ (figure 18) are quite 
insensitive to the forcing over the investigated frequency range. For the cyclic 
variations of the microscale, it may first be remarked that in the quasi-steady regime 
the scaled values ( A + )  should be independent of time, i.e. ( A + )  = h+, if the variations 
due to those of the position (y’) may be neglected. This is only approximately the 
case, because as shown by Sreenivasan at af. (1983) h+ decreases with y+ but this 
decrease is by about 30 YO from y+ = 15 until the outer edge of the logarithmic region 
and is almost constant in the viscous sublayer. Keeping this in mind and since the inner 
scaling holds in the inner layer: 

and if the amplitudes are small 

Hence in the quasi-steady small-amplitude limit one should have with inner scaling: 

a,- = a ,  @i- @? = 180”. 

Figures 19(a) and 19(b) show that this is well borne out by the measurements- 
despite the fact ui(q.g). = 2aE is not very small when 1; > 30. It is seen that the phase of 
( A )  remains nearly in opposition to the phase of ( r )  over the whole frequency range. 
The amplitude ratio .;/a,, on the contrary, decreases sharply when the forcing 
frequency is increased with a minimum value of about 0.3 at iz = 10. 

The micro lengthscale A, may be inferred from the timescale by the Taylor 
hypothesis xz = $I+, assuming that the convection velocity of the small scales is the 
local mean velocity. In unsteady flow the Taylor hypothesis should be written with the 
phase-averaged velocity: dx = - ( u )  dt so that 

and hence (A,) = ( u )  ( A ) .  Thus 

h,[l +a,-,coS(wt+@,-,-@?)] = Dh(1 +a,cos(wt+@,-@J)(l +a~COs((”t+@~-@~)).  

This shows that h:(unst) = hicsa since both Ut and h+ are not modified by forcing. 
Furthermore, by noticing that at y+ = 15, @, - @? is generally small, by making use of 
the result @i - @+ E 180” and by assuming that the amplitudes are small, the above 
relation simply yields 

The amplitude of the micro lengthscale thus varies due to the combined effects of the 
forcing on the micro timescale and of the convection velocity. In order to find out what 
the relative contribution of each one is, it is best to express both in terms of the 
centreline amplitude in the high-frequency (HF) and low-frequency (LF) regime. For 
a,, we have : 

uf i  % lai-a,l. 
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FIGURE 20. Time-mean values of skewness (0) and flatness (A) factors 
of au'/al us. frequency parameter. 

HF  a,  z 2aG since at y+ = 15, A ,  = A,, and U z $Uc; 

LF a, z au7. since at y+ = 15, ( u )  = (u7) f ( (y f ) )  % (u,) 

For q, we deduct the value from the ratio aX/a ,  of figure 19 (b), so we need the relation 
between a, and uG. At 

HF 

LF a, = ;a&. 

Combining these results yields 

at HF  (1; < 10) 

at LF (1; > 30) where a~ = a, U G  = ;a,-,. 

Thus at LF the contribution of uX to a% is nearly twice that a,. On the other hand at 
HF the factor 3 l a ~ / a ~ l ;  which is the contribution of ax is minimum when a ~ / a ,  is 
minimum since this ratio increases rapidly when 1; exceeds 10 as shown by figure 19(b). 
From the measured values of this figure, it follows that (31ax/1~ai)l:=lo z 1. Thus 

= f, which means that at 1; = 10 the modulation of (A,) is mainly due to 
the convection velocity and uA; = uz. The conclusion is that (A,) is mostly modulated 
with an amplitude which is of the same order as that of the centreline velocity. The 
forcing is, therefore, felt in the small scales of the turbulence. In short, the modulation 
of the microscale (A,) comes mainly from the convection velocity at HF and mainly 
from the microscale ( A )  at LF. In the range 10 < 1: < 30, there should hence be a 
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FIGURE 21. Relative amplitudes of the modulations of the skewness (0) 
and flatness (a) factors of au’lat. 

frequency when the two contributions to a z  balance and for which should be zero 
or at least small. One may further remark that when 1; < 10, ahla, will increase again 
with decreasing 1;; actually at 1: = 7, ai /a ,  = 1.1, so the u~ is zero again close to 
1: = 7. Thus aAz varies rapidly in the range 1: = 7-30. 

Another aspect of the small turbulence scale is represented by the skewness S of 
du’ldt because it is directly related to the vorticity/dissipation production which is 
composed of terms like (2u’/C1xj3. It is indeed easily seen that ( S )  (2u’/2t) = - ( S )  
(au’/c?x) because of the normalization with the variance so that the convection velocity 
does not intervene. The mean value of ( S )  is about 0.85 (figure 20) and compares well 
with the data of Ueda & Hinze (1975) taken in steady flow. As for other quantities, the 
time-mean skewness is not affected by the forcing. 

In discussing the modulation of (S) let us first remark that this is a structure 
parameter independent of any scaling and that it is independent of the Reynolds 
number provided this number is large enough (Kuo & Corrsin 1971). Since at low 
frequency the forcing affects the phase averages only via the changes of the centreline 
velocity and the changes of the Reynolds number, and since the profile of s is flat 
around y+ = 15 in quasi-steady flow (Ueda & Hinze 1975), it may be expected that ( S )  
is not modulated in this case. This is well borne out by the measurements, since the 
amplitude a3 is effectively zero when Z: = 60 as shown on figure 21. The constancy of 
( S )  during the cycle implies that ( ( W / a t ) 3 }  varies exactly in the same way as 
((c?u’/dt)‘)j~, which is effectively modulated at low frequency as was seen above in the 
discussion of the microscale. At high frequencies as reaches values of the order of 10 YO, 
i.e. 0 . 5 ~ ~ .  This may appear to be a small modulation at first sight but in view of the 
preceding discussion it is quite significant since it reveals a change in the internal 
structure of the small-scale turbulence. The amplitude a3 seems to pass through a 
maximum at 1; = 12. With due caution on account of the small number of data points, 
of the small relative variations of (S) and of the experimental uncertainty, the same 
critical value of the frequency parameter is found again. 

The flatness factor of c?‘zl/at is related to a sort of intermittency of the turbulence. It 
may be seen on figure 20 that the time-average value is about 6.6 and again compares 
well with the steady flow data at y+ = 15 of Ueda & Hinze (1975). The modulation 
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amplitude of ( F )  (figure 21) varies in the same manner with the forcing frequency as 
that of ( S ) .  The remarks made above concerning the low- and high-frequency 
behaviour of ( S )  are also relevant for the flatness factor. 

5.  Conclusion 
The data on unsteady turbulent channel flow discussed in this paper have been 

acquired by making use of several experimental techniques and cover a significant 
range of forcing amplitudes and frequencies. They confirm that all the time-mean 
characteristics -- with the sole exception of the turbulent intensity in the inertial 
sublayer - are not or are only slightly affected by the forcing even when the amplitude 
and the frequency are high enough to produce periodic flow reversal near the wall. The 
similarity of the oscillating velocity field 6 and of the oscillating wall shear stress 7 
when the non-dimensional Stokes length 1; (or equivalently the forcing frequency w+ 
expressed in wall units) is constant is also confirmed. It is shown that these periodic 
oscillations are affected by the turbulence only when 1; > 10. 

The turbulence itself is modulated by the forcing as is evident from the phase 
averages (u’u’) and (7’7’). The variations of the turbulence modulation across the 
flow show that it diffuses away from the wall with a diffusivity that is very close to the 
eddy diffusivity in the inertial sublayer. This suggests that a large part of the (u’u’)- 
modulation is produced in the buffer layer where most of the mean turbulence energy 
is also produced. The frequency response of (u’u’) at y+ = 15 and of (7 ’7 ’ )  decays 
when the forcing frequency increases once I: < 20. Moreover (7 ’7 ’ )  decays sooner and 
faster than (u ’u ’ ) ,  showing that the relaxation time of the turbulence that filters to the 
wall is about two to three times larger than that in the buffer layer. Similar conclusions 
are reached from the time lags between the modulation of the random turbulent 
fluctuations and the oscillations of the corresponding deterministic quantities. These 
time lags are 75 and 130 wall units respectively for (u‘u‘) and (7’7’)  when w+ < 0.012, 
i.e. 1: > 13. They decrease by nearly a factor 2 once w+ > 0.025. It may be noted that 
this value approaches the bursting frequency of the mean flow w i  = 0.036. 

The forcing propagates to the small scales of the turbulence as is evident from the 
cyclic variations of the Taylor microscale and from the skewness factor of au’lat. 

The evolution of several parameters reveals that critical changes in the turbulence 
occur in the range 1,’ = 10 to 13, i.e. w+ = 0.012 to 0.02. As was pointed out, this upper 
frequency approaches the mean bursting frequency. It may also be speculated that 
there is an optimal interaction of the oscillating flow with the turbulence in the buffer 
region in this frequency range since at higher frequencies this region oscillates as a plug 
flow with zero or small oscillating shear and at lower frequencies the quasi-steady 
regime is approached. 

Simple quasi-steady analysis combined with the linearity assumption predicts much 
low-frequency behaviour remarkably well and gives at least the right trend when the 
forcing amplitudes are large. It shows saturation effects, as on the modulation of (7’7’)  

whose amplitude in the linear quasi-steady limit is four times the centreline amplitude, 
The quasi-steady regime is reached as soon as 1; exceeds 30. 

It must be emphasized that the present results concern unsteady channel flow while 
in most practical situations one has to deal with boundary layers and furthermore with 
boundary layers in pressure gradients. From the agreement of some unsteady 
boundary-layer results with the present data and from the fairly universal character of 
the turbulent flow near the wall - not withstanding some recent observations to the 
contrary - one may expect unsteady turbulent boundary layers to behave much as 
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channel flows in the inner layer. This clearly does not preclude the existence of 
substantial differences in the unsteady behaviour of the outer flows due to the loss of 
the streamwise homogeneity, and the intermittency in the wake region where the 
presence of the wall is felt only weakly. 
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Appendix A. Wall deflections 
If the periodic pressure variations fi which drive the oscillating flow produce wall 

deflections 2 a probe which does not move with the wall will see a parasitic velocity 
oscillation due to its displacement across the mean velocity profile. Since the 
maximum velocity gradient is < / v  in the viscous sublayer : 

iid d (U?/V) B 

and A z  < (</~>4, 

so that 

where ( )’ designates a quantity scaled with inner variables as usual. Hence, the relative 
error on the measured velocity amplitude is of order of Under given forcing 
conditions the error is proportionally worse as the wall is approached since A;  tends 
to zero and it is likely to be more severe when the viscous lengthscale V / U ,  is smaller. 
It is possible that such wall deflections were sufficiently important in the experiment of 
Acharya (1975) to account for the surprising shape of the A,  and @, profiles of this 
author in the high-frequency case. 

In order to check the magnitude of the periodic displacement of the wall, 
measurements were made with an ultrasonic depth gauge having a sensitivity of 1 pm 
(figure 22). If the imposed frequency is small compared to the resonance frequency of 
the structure, as is the case here, the amplitude of the displacement should be 
proportional to the driving forcep” and, therefore, to W A , ~ .  It is seen from figure 22 that 
indeed A&m) = 2f(Hz) A,-,(cm SKI). This gives a maximum error of less than 10 YO in 
the most unfavourable case corresponding to .f= 0.4 Hz. 

Appendix B. Correction of the statistical bias effect in the LDA 
measurements 

The correction of the statistical bias in velocity measurements performed with LDA 
is performed in a simplified manner by simultaneously determining the time-mean 
Doppler frequency and the average Doppler period. Consider a population of 
measured velocities over which averages are determined. On the histogram of this 
population, let nt be the number of samples of the class ui. If the concentration of 
scattering particles is homogeneous,the number of measurement is proportional to the 
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FIGURE 22. Amplitude of the periodic wall deflections produced by the oscillating pressure. 

flux of particles through the probe volume, i.e. ni = kui. Then the measured (index m) 
moment of order D is 

where uP+l is the true moment of order p + 1. Let df be the fringe spacing, f D  and t, be 
the measured Doppler frequency and period, so that ui = df fD i  = df / tD i .  Forp = I ,  by 
substituting u = u+u’ in the above formula, one obtains 

- 
( u ) m = d f K ) m  = , = # ( I + $ ) .  U2 

U 

Thus the average Doppler frequency yields a biased value of the mean velocity as 
shown by McLaughlin & Tiederman. For p = - I ,  however, 

which shows that the true unbiased mean velocity may simply be obtained from the 
average Doppler period. This is especially interesting because counters actually 
determine the Doppler period. 

The mean velocity and turbulent intensity were, thus, computed from the average 
Doppler period and frequency according to the two relations: 

Similar relations apply to the ensemble or phase averages. 

Appendix C. Response of the thermal boundary layer over the hot film 
with flow reversal 

The effect of the heat transfer into the substrate was negligible in the present working 
conditions. The attenuation of the frequency response in the most unfavourable case 
corresponding to w* = 0.5 was only 4 %  (with Pe = 18) as given by the computations 
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FIGURE 23. Comparison of the measurements of the modulation of the wall shear stress with the 
computations of Tardu et a / .  (1985). Pe = 12, a? x 2.  (a)  /: = 7, ( b )  /: = 5. +, Measurements; 0 ,  
computations; 0, rectification. 

of the full heat transfer problem in the fluid and the solid carried out by Tardu, Pham 
& Binder (1991) in the case of a glass(substrate)/water(fluid) combination. 

The axial diffusion could, however, not be ignored since the time-mean Peclet 
number is small. In such a case the LevCque 5 law has to be corrected by 

NU cc  NU^^^ + O(Pe-t) K Pei + O(Ped) 

i.e. the effect of the axial diffusion varies like Pe-:. Ling (1963) has, for instance, 
proposed the following relationship : 

Nu = 0.807 Pe4+0.19 Ped  

when Pe is small. In the quasi-steady limit and with aG = 0.64 the minimum Pe during 
the oscillation cycle is about 2.5 in these measurements. The difference between the 
LevCque solution and the computations and measurements of Ackerberg, Pate1 & 
Gupta (1978) for this Pe value is less than 14%. This slight difference combined with 
the fact that the axial diffusion is somewhat taken into account in the in situ 
calibrations with E 2  = A + B7-n shows that the error in the measurements of (7) in the 
low-imposed-frequency range is less than 10 %. 
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In the high-imposed-frequency regime wherein flow reversal occurs the situation is 
more complicated. Let us recall that the axial diffusion, which may become important 
near flow reversal, in particular when the time-mean Pe number is small, is not taken 
into account in the previous computations of Kaiping (1983). If Pe is large it is likely 
that the effects of the thermal wake and the thermal inertia dominate the axial diffusion 
near the reversal points but this has to be confirmed. On the other hand, the effect of 
the thermal wake over the hot film during the flow reversal and the axial diffusion are 
both omitted in the theoretical work of Pedley (1976). That is the reason why a 
complete numerical solution of the problem was undertaken by Tardu, Binder & 
Blackwelder (1985) and these results will be published elsewhere (Pham 1992). Let us 
make a few comments here with a typical example. Figure 23 compares the measure- 
ments with the computations for Pe = 12, a, = 2 respectively for w* = 2Pei/1iZ = 0.1 
(1; = 7) and o* = 0.2 (1; = 5). These conditions are much more severe than those 
investigated in this study. For 1; = 7 the solution of the full equation agrees well with 
the experimental results (figure 23 a). This is somewhat surprising because high 
turbulent fluctuations are present in the experiments, but the computation is fully 
laminar. At the highest imposed frequency, there is a phase lag near the first reversal 
point (figure 23 b) .  In both cases the behaviour of (7) is surprisingly close to the quasi- 
steady behaviour (taking account of the axial diffusion) in the reversal phase except 
near the reversal points. The imposed frequency at which true unsteady effects appear 
in the response of the thermal boundary layer is much higher than the maximum 
investigated here (1; < 3; Tardu et al. 1985; Pham 1992). This justifies the rectification 
of (7) with respect to zero as shown in figure 23(b). This procedure has caused 
negligible harmonic distortion in the phase average of the wall shear stress modulation 
in the present working conditions. 
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